MODULE HANDBOOK: NANOBIO TECHNOLOGY

MODULE HANDBOOK
Preamble

Upon successful completion of the distance study programme the graduates, which are primarily composed of engineers, natural scientists and medical doctors, have acquired skills that enable them to strongly improve products and processes in the organizations in which they operate. Thus the study programme makes a contribution to the high demand for skilled workers in the field of nanobiotechnology.

The two on-campus weekends contribute to the acquisition of practical skills. In this context, the students apply their acquired knowledge with the help of experienced tutors. This is usually done in the context of topic-specific lab work which is carried out at the Department of Physics at the University of Kaiserslautern and at the Institute for Technical Chemistry of the University of Hannover.

An important secondary objective of the distance study programme is learning of working in an international environment. The fact that the study programme has a high percentage of foreign students helps to acquire these skills in parallel to the studies.

The qualification objectives are described below on the basis of professional, methodological and social competences, as well as in terms of learning outcomes.

Professional competence is the ability to cope with job-specific tasks and situations independently and responsibly meeting the theoretical requirements. Methodological competence is the ability to apply certain working methods. Social competence is the ability to deal with fellow men unprejudiced, constructively and easily in the work environment. Interacting and cooperating with others, as well as management skills play a major role.

The overall qualification objective is: Graduates have the technical knowledge, skills and competences to understand issues in the broad field of nanobiotechnology and to cope independently and responsibly with tasks set by the theoretical requirements by applying the work methods they learned, and deal fairly, constructively and confidently with their fellow men.

The following competences are derived from the overall qualification objectives:

- **Professional competence**: The graduates have acquired an extensive factual knowledge about the principles, general approaches and models in the field of nanobiotechnology. Moreover, they have the ability to raise, formulate and formalize issues at all abstraction levels, and can solve these problems through critical thinking and a pronounced judgement in a scientific way.

- **Methodological competence**: The graduates have the ability to combine knowledge from different fields of nanobiotechnology and apply methods and techniques learned in this study programme. Furthermore, they can apply the acquired knowledge to new innovative methods from the field of nanobiotechnology in their field of activity, and they have the ability to learn and to develop new technologies.

- **Social competence**: The graduates have the ability to carry out activities in the field of nanobiotechnology independently to introduce new technologies in organizations, and they have the ability to work in an interdisciplinary and international team.
The **learning outcomes** of this study program are:

- Knowledge of fundamental concepts of quantum physics
- Basic knowledge of molecular biology
- Insight into the concepts of a biosensor, linear and rotary molecular motors
- Knowledge of the different applications of nanoparticles in drug delivery and diagnostics
- Familiarity with the main characterization procedures on the nano-scale
- Insight into the principles of screening methods in biology
- Knowledge of the preparation of advanced materials like nanosized powders, coatings, ceramics, compacts, monoliths, and glasses.
- Insight in synthesis processes for nanoparticles in which the essential particle formation steps are the result of physical and chemical phenomena.
- Familiarity with coating materials on the basis of the sol-gel- and nanotechnology
- Knowledge of the interaction phenomena between biological entities and non-biological substrates
- Insight into basic concepts of biomaterials for implantation nanotechnological methods that are used to improve biomaterial interactions with biological tissue
Module name
Fundamentals of Quantum Mechanics

Lecturer
apl. Prof. H.-J. Korsch
Fachbereich Physik, Technische Universität Kaiserslautern

Module coordinator
Prof. H.-Ch. Schneider

Abbreviation
NT0001

Work load
125 h

Credit points (CP)
5

Classification within the curriculum
1st semester basics

Duration
one semester

1 Courses
Online-tutorial of 6 weeks

Contact hours
35 h

Self-study hours
90 h

Credit points (CP)
5

2 Content and targeted learning outcomes

Content:
- Classical and quantum physics
- The Schrödinger equation
- One-dimensional systems
- Two- and three-dimensional systems
- Some advanced topics (facultative)

Targeted learning outcomes:
The objective of these lecture notes is to offer to students a brief introductory course in basic quantum mechanics. The plan is to present the fundamental concepts of quantum physics in a way that a clear understanding of the theoretical methods is possible without full mathematical rigor.

After studying the first four chapters of this module the students will be familiar with the Schrödinger equation and their applications to simple one-dimensional systems, the time evolution of wave packets, the expectation values of physical variables as well as the uncertainty relation. In the fifth chapter the students approach the description of real quantum objects in three dimensions and will have a detailed look at the structure of atoms, molecules, artificial atoms and quantum dots.

3 Literature

4 Teaching format
Textbook for self-study, self-control assignments, online tutorial, lecture “Visual Quantum Mechanics” during kick-off. The participation in kick-off is not compulsive.

5 Usability of the module in individual study programs
Distance Study Program “Nanotechnology” (Master)

1 The contact hours consist of the time in which the student is in contact with the tutor and her / his fellow students during the online tutorials and (if required) the time spent at the on-campus weekends.
<table>
<thead>
<tr>
<th></th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formal admission requirements: none</td>
</tr>
<tr>
<td></td>
<td>Contentual prerequisites: Appendix A of the textbook has to be learned before the tutorial starts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mail-in exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Study achievements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solving the mail-in exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yearly in winter semester</td>
</tr>
</tbody>
</table>
| **Module name** | **Fundamentals of Molecular Biology, Genetics** | **Lecturer** | Dr. Peter Reichmann, Employee in the publishing company Studienwelt Laudius
Dr. Angelika Roth, Research associate, Scientific Office DFG-Senate Commission on Food Safety
Technische Universität Kaiserslautern | **Module coordinator** | Dr. Angelika Roth |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>NT0002</td>
<td>Work load</td>
<td>125 h</td>
<td>Credit points</td>
</tr>
<tr>
<td>1</td>
<td>Courses</td>
<td>Online-tutorial of 6 weeks</td>
<td>Contact hours<sup>1</sup></td>
<td>35 h</td>
</tr>
</tbody>
</table>
| 2 | **Content and targeted learning outcomes** | **Content:**
- Basics in chemistry
- DNA and RNA
- From amino acids to proteins
- The flow of genetic information
- Molecular biology of gene function
- Regulation of gene expression
- Alteration of genetic information
- Recombinant DNA technology
- Important techniques in molecular biology
- Genomics
- Biology in the computer age | **Targeted learning outcomes:**
This module provides the students with the basics knowledge of molecular biology, i.e. the structure of the nitrogenous bases, the details of the DNA double helix, RNA secondary structures, the general structure of amino acids, the properties of the 20 amino acids that build up proteins, primary, secondary, tertiary, quaternary structure of a protein, the basic principles of DNA replication, the definition of a gene, gene regulation mechanisms in prokaryotes and eukaryotes, the molecular basis of gene transfer and mutations, the basic techniques of molecular biology, the principle of Southern blotting, and the basic concepts of all genome analysis techniques.
The knowledge taught in this module forms the basis for the understanding of further subjects in this study program like screening methods in biology, nanotechnologically modified biomaterials and molecular nanosystems. |
| 4 | **Teaching format**
Textbook for self-study, self-control assignments, online tutorial |
| 5 | **Usability of the module in individual study programs**
Distance Study Program “Nanotechnology” (Master) |
| 6 | **Prerequisites**
Formal admission requirements: none
Contentual prerequisites: none |
| 7 | **Assessment**
Written examination, 90 minutes |
| 8 | **Study achievements**
Passing the written examination at the end of the semester |
| 9 | **Offered**
Yearly in winter semester |
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Work load</th>
<th>Credit points (CP)</th>
<th>Classification within the curriculum</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT0013</td>
<td>125 h</td>
<td>5</td>
<td>1st semester advanced</td>
<td>one semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Courses</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>Credit points (CP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online-tutorial of 6 weeks</td>
<td>35 h</td>
<td>90 h</td>
<td>5</td>
</tr>
</tbody>
</table>

| 2 Content and targeted learning outcomes |

Content of the textbook “Molecular Nanosystems: Sensors”:
- Sensors and Biosensors
- Nanoelectromechanical Transducers
- Biosensing Applications

Content of the textbook “Molecular Nanosystems: Molecular Motors”:
- Importance of movement for living systems
- Kinesin, dynein and myosin: motors for linear, intracellular transport
- ATP synthase

Content of the textbook “Nanoparticles as Therapeutic Drug Carrier and Diagnostics”:
- Features of polymeric nanoparticles
- Preparation and characterization of nanoparticles
- Recent developments in pharmaceutical nanoparticles technology
• Therapeutic applications of nanoparticle carrier systems
• Nanoparticles as diagnostics

Targeted learning outcomes:

After learning the first textbook the student will have become familiar with the concept of a biosensor. More precisely, he will know the advantages and disadvantages of acoustic and cantilever sensors. Furthermore, the student will have a basic knowledge of resonating beams and of the different possibilities to use cantilevers as biosensors.

After reading the second textbook the student will get a sense of the importance of movement for living systems. He will learn about linear and rotary motors, how they work and what are they for. The student will be able to compare the different molecular motors and their potential application in nanobiotechnology, and envision potential nanobiotechnological applications of the different motor types.

In the third textbook, some basic principles of polymer nanoparticles are discussed apart from their applications in the area of biomedical sciences. The students will get an idea of several parameters that one has to consider while dealing with nanobiotechnology for medical applications. After studying this lectures, the student should understand the features of polymeric particles, preparation and characterization techniques, different applications in drug delivery as well as the applications of nanoparticles as diagnostics.

Literature

“Molecular Nanosystems: Sensors”:

“Molecular Nanosystems: Molecular Motors”:

<table>
<thead>
<tr>
<th>4</th>
<th>Teaching format</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Textbook for self-study, self-control assignments, online tutorial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Usability of the module in individual study programs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As optional module in the Distance Study Program “Nanotechnology” (Master)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formal admission requirements: none</td>
</tr>
<tr>
<td></td>
<td>Contentual prerequisites: none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mail-in exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Study achievements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solving the mail-in exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yearly in winter semester</td>
</tr>
<tr>
<td>Module name</td>
<td>Lecturer</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Analytical Techniques in Nanotechnology</td>
<td>Prof. Dr. Christiane Ziegler</td>
</tr>
<tr>
<td></td>
<td>Fachbereich Physik Technische Universität Kaiserslautern</td>
</tr>
<tr>
<td></td>
<td>Dr. Christine Müller Fachbereich Physik Technische Universität Kaiserslautern</td>
</tr>
<tr>
<td></td>
<td>Prof. Roland Ulber Fachbereich Maschinenbau und Verfahrenstechnik Technische Universität Kaiserslautern</td>
</tr>
<tr>
<td></td>
<td>Dr. Frank Stahl Institut für Technische Chemie Universität Hannover</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Work load</th>
<th>Credit points (CP)</th>
<th>Classification within the curriculum</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT0007</td>
<td>300 h</td>
<td>12</td>
<td>1st semester advanced</td>
<td>two semesters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Courses</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>Credit points (CP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Online-tutorial of 8 weeks</td>
<td>56 h</td>
<td>144 h</td>
<td>8</td>
</tr>
</tbody>
</table>

On-campus weekends in the 1st and 2nd semesters 14 h are designated for each on-campus weekend 36 h are designated for each on-campus weekend 4

<table>
<thead>
<tr>
<th>2</th>
<th>Content and targeted learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Content Textbook “Characterization of Nanostructures”:</td>
</tr>
<tr>
<td></td>
<td>• Prerequisites for resolution on the nanometer scale</td>
</tr>
<tr>
<td></td>
<td>• Overview on experimental aspects</td>
</tr>
<tr>
<td></td>
<td>• Microscopic techniques</td>
</tr>
<tr>
<td></td>
<td>• Spectroscopic and spectrometric techniques: chemical composition</td>
</tr>
<tr>
<td></td>
<td>• Spectroscopic techniques: electronic structure</td>
</tr>
<tr>
<td></td>
<td>• Spectroscopic techniques: vibrational and magnetic structure</td>
</tr>
<tr>
<td></td>
<td>Content Textbook “Screening Methods in Biology, Chip Technologies”:</td>
</tr>
<tr>
<td></td>
<td>• Traditional screening of genes and gene expression</td>
</tr>
<tr>
<td></td>
<td>• High-throughput screening</td>
</tr>
<tr>
<td></td>
<td>• Chip technologies</td>
</tr>
</tbody>
</table>
• Gene expression analysis by RNA Seq
• Protein chip technologies
• Aptamer microarrays
• Cell and tissue microarrays
• Lab-on-a-chip

Targeted learning outcomes:

The aim of the first part of this module – “Characterization of Nanostructures” – is that the students get a comprehensive view of the main characterization procedures of any kind of nanomaterials, no matter if it is a particle or a very thin film of some nanometers thickness. In general the students learn about:

• How a characterization method does work in general?
• Which information can he clearly get from the output of the experiment?
• Which are the limits of the method?
• To which materials are the methods dedicated?

At the beginning the students learn the prerequisites for resolution on the nanometer scale, i.e. surface sensitivity and lateral resolution. Furthermore, they will get an overview on the most important experimental aspects like UHV, special requirements for biological samples etc.

Furthermore, students will get familiar with the most powerful tools in the field of nanomicroscopies: Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Tunneling Microscopy, Scanning Force Microscopy, Scanning Nearfield Optical Spectroscopy, and other scanning probe techniques.

The different methods of spectroscopy and spectrometry which are used to get information about the chemical composition of nanomaterials are a further learning outcome: X-ray Photoemission Spectroscopy (XPS), Auger Electron Spectroscopy (AES), Secondary Ion Mass Spectrometry, Atom Probe, Scattering Techniques.

Students will also become acquainted with methods which are used to look for the electronic structure of nanomaterials, these are spectroscopic techniques like e.g.: UV-photoelectron spectroscopy, inverse photomission spectroscopy, Scanning Tunneling Spectroscopy, and Electron Energy Loss Spectroscopy (EELS).

Finally the students will get insight in the spectroscopic techniques which allow getting information about the vibrational and magnetic structure of nanomaterials: High Resolution Electron Energy Loss Spectroscopy, infrared techniques, Raman Scattering Spectroscopy, Brillouin Scattering, Spin-resolved Photoemission, and magnetic modes of Scanning Probe Microscopies.

Practical skills in this area will be acquired during the on-campus weekend at the end of the 2nd semester with the following targeted learning outcomes:

The students:

• know the necessary sample preparation for characterization of nanostructures,
• get hands-on experience in imaging by AFM, STM, SEM and EDS analysis,
• know how to interpret the information supplied by the different imaging techniques,
• are able to decide which of the imaging methods is appropriate for a specific sample or purpose.

The learning outcomes of the lecture “Screening Methods in Biology” can be summarized as follows:

The principles of traditional screening methods in biology should be understood. The
students should become acquainted with the basic mechanisms in high-throughput screening systems. The main focus lies on the description of different chip technologies such as DNA and protein chip technology. It is the aim that the students based on this program will be able to perform their own chip experiments. As new concepts the principles of a lab-on-a-chip, aptamer-microarrays, cell microarrays and RNA-seq should be understood.

Practical skills in this area will be acquired during the on-campus weekend at the end of the 1st semester with the following targeted learning outcomes:

The students

- know the molecular biology of gene expression,
- know the principles of traditional screening methods in biology,
- know the basic mechanisms in high-throughput screening systems,
- know different microarray technologies such as DNA, Protein and Aptamer microarray technology,
- will be able to perform their own microarray experiments based on this programme,
- will be able to perform the data analysis of an microarray experiment,
- know to use of bioanalytical systems to describe complex reactions in biotechnological processes,
- will know the principles of a lab on a chip as a new concept.

Literature

“Characterization of Nanostructures”:

“Screening Methods in Biology, Chip Technologies”:

4 Teaching format
Textbooks for self-study, self-control assignments, online tutorial, lecture “Introduction into Microarray Technology” and lab “Gene Expression under Heat Shock Conditions” during the first on-campus weekend, lecture “Seeing at the Nanoscale: Microscopical Methods with Atomic Resolution” and labs “Raster Force Microscopy, Scanning Tunnelling Microscopy, Scanning Electron Microscopy” during the second on-campus weekend.

5 Usability of the module in individual study programs
Distance Study Program “Nanotechnology” (Master)

6 Prerequisites
Formal admission requirements: none
Contentual prerequisites: none

7 Assessment
Written examination, 120 minutes

8 Study achievements
Passing the written examination at the end of the semester, participation in both on-campus weekends (1st and 2nd semester)

9 Offered
Tutorials are offered yearly in winter semester; on-campus weekend belonging to “Screening Methods in Biology, Chip Technologies” is offered yearly in winter semester; on-campus weekend belonging to “Characterization of Nanostructures” is offered yearly in summer semester.
<table>
<thead>
<tr>
<th>Module name</th>
<th>Lecturer</th>
<th>Module coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanomaterials 1</td>
<td>Prof. Rolf Clasen</td>
<td>apl. Prof. Einar Kruis</td>
</tr>
<tr>
<td></td>
<td>ehemals: Naturwissenschaftlich-Technische Fakultät III Universität des Saarlands</td>
<td>Fakultät für Ingenieurwissenschaften Universität Duisburg-Essen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Work load</th>
<th>Credit points (CP)</th>
<th>Classification within the curriculum</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT0009</td>
<td>175 h</td>
<td>7</td>
<td>2nd semester advanced</td>
<td>one semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Courses</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>Credit points (CP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Online-tutorial of 8 weeks</td>
<td>49 h</td>
<td>126 h</td>
<td>7</td>
</tr>
</tbody>
</table>

2 Content and targeted learning outcomes

Content of the textbook “Processing Ceramics and Composites and Their Applications”:

- Overview nanotechnology
- Synthesis of nanosized powders
- Characterization of nanopowders
- Dispersing
- Aerosols
- Shaping
- Drying
- Modification
- Sintering
- Characterization

Content of the textbook „Physical Synthesis of Nanoparticles“:

- Nanoparticle movement and interaction
- Nucleation and growth
- Gas-phase synthesis
- Nanoparticle reactor design
- Nanoparticle formation on substrates
- Ball milling techniques

Content of the textbook „Chemical Synthesis of Nanoparticles“:

- Basic mechanisms in liquid phase processes
- Reduction processes and coprecipitation
- Sol-gel nanoparticle synthesis
- Synthesis in confined volumes
- Synthesis of nanoparticles by means of diblock copolymers
- Templated-based synthesis
- Gas-phase methods
Targeted learning outcomes:

The first part of this module focuses on the preparation of advanced materials like nanosized powders, coatings, ceramics, compacts, monoliths, and glasses. The students will also learn the characterization methods of the final material.

The second part provides the students with insight in synthesis processes for nanoparticles in which the essential particle formation steps are the result of physical phenomena. A major part of these techniques bases on the creation of a supersaturated vapor. In the first chapters students are provided with the theoretical background necessary to understand the formation processes. A large part of this course is dealing with vapor phase processes, which can be and are already scaled up by engineers into large industrial processes.

Students will also learn how to design a simplified gas-phase reactor. An extensive case study in one full chapter gives an insight in the methods used by engineers to design a nanoparticle reactor on the basis of the theory provided in the first chapters.

The third part of the module focuses on synthesis processes for nanoparticles in which the essential particle formation steps are the result of chemical phenomena. Examples are given of the main synthesis principles and most important chemical reactions. After having studied this course, students should be able to recognize a chemical reaction or chemical compound cited in the textbook and to write down analogous reactions.

Literature

"Processing Ceramics and Composites and Their Applications":

„Physical Synthesis of Nanoparticles“:

„Chemical Synthesis of Nanoparticles“:

<table>
<thead>
<tr>
<th></th>
<th>Teaching format</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Textbooks for self-study, self-control assignments, online tutorial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Usability of the module in individual study programs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distance Study Program “Nanotechnology” (Master)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formal admission requirements: none</td>
</tr>
<tr>
<td></td>
<td>Contentual prerequisites: none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Written examination, 120 minutes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Study achievements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Passing the written examination at the end of the semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yearly in summer semester</td>
</tr>
</tbody>
</table>
1. Courses

<table>
<thead>
<tr>
<th>Content and targeted learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content:</td>
</tr>
<tr>
<td>- Basics of inorganic–organic nanocomposites</td>
</tr>
<tr>
<td>- Processing coatings</td>
</tr>
<tr>
<td>- Analytical methods for the characterization of the liquid sol</td>
</tr>
<tr>
<td>- Characterization of the cured coating</td>
</tr>
<tr>
<td>Targeted learning outcomes:</td>
</tr>
<tr>
<td>After completing this subject students will become familiar with coating materials on the basis of the sol-gel- and nanotechnology. The student learns the structure, the synthesis, the application and the use of coating materials based on chemical nanotechnology. The chemical and physical basic knowledge is provided where necessary, such that students learn to develop a synthesis and application process and further to examine and characterize the coated samples.</td>
</tr>
</tbody>
</table>

2. Literature

- R. Kasemann, H. Schmidt: Proc. First European Workshop on Hybrid Organic-

4 **Teaching format**

 Textbook for self-study, self-control assignments, online tutorial

5 **Usability of the module in individual study programs**
<table>
<thead>
<tr>
<th></th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formal admission requirements: none</td>
</tr>
<tr>
<td></td>
<td>Contentual prerequisites: none</td>
</tr>
<tr>
<td>7</td>
<td>Assessment</td>
</tr>
<tr>
<td></td>
<td>Mail-in exercises</td>
</tr>
<tr>
<td>8</td>
<td>Study achievements</td>
</tr>
<tr>
<td></td>
<td>Solving the mail-in exercises</td>
</tr>
<tr>
<td>9</td>
<td>Offered</td>
</tr>
<tr>
<td></td>
<td>Yearly in summer semester</td>
</tr>
</tbody>
</table>
Module name
Interaction between Biological and Non-biological Devices

| Lecturer | Prof. Axel Blau
Department of Neuroscience and Brain Technologies
The Italian Institute of Technology, Genova, Italy |
|-----------|--|
| Module coordinator | Prof. Eva Eisenbarth
Fachbereich Informatik und Naturwissenschaften
Fachhochschule Südwestfalen
Iserlohn |

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>NBT09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>75 h</td>
</tr>
<tr>
<td>Credit points (CP)</td>
<td>3</td>
</tr>
<tr>
<td>Classification within the curriculum</td>
<td>2nd semester advanced</td>
</tr>
<tr>
<td>Duration</td>
<td>one semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Courses</th>
<th>Contact hours£</th>
<th>Self-study hours</th>
<th>Credit points (CP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online-tutorial of 6 weeks</td>
<td>21 h</td>
<td>54 h</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Content and targeted learning outcomes

Content:
- Types of interactions on atomic and molecular level
- Molecularly derived types of interactions between biology and biological as well as non-biological substrates
- How does nature make use of adhesive and anti-adhesive interactions? From microscopic to macroscopic scales

Targeted learning outcomes:

The aim of these lectures is to give the students a survey on most of the interaction phenomena between biological entities and non-biological substrates, that range from molecular mechanisms to all sorts of macroscopic interactions.

More precisely, after reading these lectures, the students will be familiar with the different types of chemical and physical interactions, with the properties and strengths of interactions, as well as with the factors that modulate their strength. They will know the various physical, chemical, and biochemical terminologies used in describing interactions. Further learning outcomes are the knowledge of the wide spectrum of cell and substrate adhesion phenomena, of the participants involved in cell adhesion, of the major proteins that mediate it, and of the similarities and differences of cell adhesion in vivo and in vitro. Students will get to know the strategies for exploiting cell adhesion factors in cell culture, the molecular and microscopic adhesion phenomena that manifest themselves on a macroscopic scale.

Finally, the students will be familiar with the range of 'non-classical' adhesion and anti-adhesive strategies used by nature, with the underlying molecular and microscopic adhesion mechanisms that manifest themselves on a macroscopic scale and with the extended range of parameters affecting cell adhesion exemplified in biofilms.
3	**Literature**
4	**Teaching format**
Textbook for self-study, self-control assignments, online tutorial	
5	**Usability of the module in individual study programs**
6	**Prerequisites**
Formal admission requirements: none	
Contentual prerequisites: none	
7	**Assessment**
Written examination, 60 minutes	
8	**Study achievements**
Passing the written examination at the end of the semester	
9	**Offered**
Yearly in summer semester |
Module name
Nanotechnologically Modified Biomaterials

Lecturer
Prof. Eva Eisenbarth
Fachbereich Informatik und Naturwissenschaften
Fachhochschule Südwestfalen
Iserlohn

Module coordinator
Prof. Eva Eisenbarth

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Work load</th>
<th>Credit points (CP)</th>
<th>Classification within the curriculum</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT0010.1</td>
<td>75 h</td>
<td>3</td>
<td>2nd semester advanced</td>
<td>one semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>Credit points (CP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online-tutorial of 6 weeks</td>
<td>21 h</td>
<td>54 h</td>
<td>3</td>
</tr>
</tbody>
</table>

Content and targeted learning outcomes

Content:
- Biomaterials
- The interface biomaterial-biological system
- Nanotechnological aspects of biological systems
- Biomaterial properties control interactions with the biological system
- Nanotechnological tools improve biomaterials
- Nanosized materials for tissue engineering
- Nanotoxicology

Targeted learning outcomes:

This module focuses on biomaterials for implantation. Here the students learn how nanotechnological methods are used to improve biomaterial interactions with biological tissue, the properties of metallic, ceramic, and polymer based biomaterials. They will know several stages of the tissue regeneration process around an implant and how this process might be influenced by biomaterial properties. Further learning outcomes are the concept of biomimetic implants, the knowledge of the properties and factors which influence the biological response to an implant, the knowledge of the nanotechnological tools that are used to tailor biomaterials to their requirements, the impact of biomimetic materials for tissue engineering applications, and work safety aspects of nanotechnology. After learning this module the students will have the ability to decide which kind of biomaterial has to be used for which application.

Literature

<table>
<thead>
<tr>
<th></th>
<th>Teaching format</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Textbook for self-study, self-control assignments, online tutorial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Usability of the module in individual study programs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As part of the optional module “Nanomaterials 2” in the Distance Study Program “Nanotechnology” (Master)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formal admission requirements: none</td>
</tr>
<tr>
<td></td>
<td>Contentual prerequisites: none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mail-in exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Study achievements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solving the mail-in exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yearly in summer semester</td>
</tr>
</tbody>
</table>